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Spin line groups describe the symmetries of spin arrangements in quasi-one-

dimensional systems. These groups are derived for the first family of line groups.

Among them, magnetic groups are singled out as a special case. Spin

arrangements generated by the derived groups are first discussed for single-

orbit systems and then the conclusions are extended to multi-orbit cases. The

results are illustrated by the examples of a CuO2 zigzag chain, a 13C nanotube

and the hexaferrite Ba2Mg2Fe12O22. Applications to neutron diffraction and

classical ground-state determination are indicated.

1. Introduction

The rapidly increasing interest in quasi-one-dimensional

helimagnets imposes a need for the analysis of such systems by

means of symmetry. Neutron diffraction measurements and

other experimental techniques confirm the existence of long-

range quasi-one-dimensional helimagnetic subsystems in

three-dimensional crystals (Lemmens et al., 2003). Such

systems show exciting properties, such as multiferroicity

(Tokunaga et al., 2010). On the other hand, the recent synth-

esis (Schnack et al., 2004; Seeber et al., 2004; Simon et al.,

2005; Garlea et al., 2008) of quantum spin nanotubes initiated

proposals for their applications in magnetic data storage or in

the field of quantum computing.

The spatial symmetries of quasi-one-dimensional systems

are gathered in 13 families of line groups (Damnjanović

& Milošević, 2010). However, when atoms (or ions) possess

non-zero magnetic moments (spins), line groups should be

extended to include them. A part of such systems can be

described by magnetic line groups (Damnjanović & Vujičić,

1982), but it turned out that these groups are insufficient to

describe the numerous spin arrangements in real quasi-one-

dimensional systems.

In fact, the symmetry of magnetic ordering and the crys-

tallographic lattice was firstly treated by Shubnikov’s theory of

black-and-white magnetic groups, assuming that spins are

(axial) vectors subjected to geometrical transformation and

time reversal. Later on, it was realized that this is an incom-

plete description of the symmetry of magnetic materials. To

overcome this deficiency, the concept of spin groups was

introduced by several authors (Brinkman & Elliott, 1966;

Bertaut, 1971; Litvin, 1973; Litvin & Opechowski, 1974) for

point, translational and space groups. This concept has been

reinforced recently by fruitful applications to magnetically

ordered quasicrystals (Lifshitz, 1998; Lifshitz & Even-Dar

Mandel, 2004).

Here, the spin groups of the first family line groups are

derived. As these groups are subgroups (of index two or four)

of all other line groups, this is the most important step,

inevitable in constructing all other spin line groups. The

classification of the spin groups is performed using the irre-

ducible representations of the line groups, and this technique,

together with the main conclusions of the theory of spin

groups derived in Litvin & Opechowski (1974), is highlighted

in x2. Applying this to the line groups of the first family, we

derive all their spin groups in x3, introducing suitable notation;

we also consider their relation to magnetic line groups. We

discuss possible spin arrangements generated by the derived

spin groups, starting with two possible types of single-orbit1

systems (x4), and then extend the conclusions to the multi-

orbit ones (x5). Finally, in x6 the most important results are

summarized, illustrated by realistic systems, and possible

applications are outlined.

2. Spin groups

We begin with a short reminder about spin groups (Litvin &

Opechowski, 1974). A spin arrangement is a vector field over

atoms, i.e. a set of pairs ðr; srÞ of atomic positions and corre-

sponding spins. Let the atomic configuration (regardless of the

spins) have a symmetry group G, which is a subgroup of the

Euclidean group Eð3Þ (point, line, diperiodic or space group),

with elements g [here g ¼ ðOjvÞ is the Seitz symbol: O is an

orthogonal transformation and v a translational vector]. Then

the spin group BðGÞ is a subgroup in Eð3Þ �Oð3Þ, where Oð3Þ

is the three-dimensional orthogonal group. Precisely, the

elements of the spin group are pairs ðg; bÞ where g and b

belong, respectively, to G and to the subgroup B of Oð3Þ. It

was shown that derivation of the spin groups was reduced

to the classification of the nontrivial spin groups. The spin

arrangement of some system is completely defined by the

nontrivial spin group. Linear and planar arrangements possess

an additional spin-only group ( ~BB, equal to C1 and C1h,

1 An orbit is a subsystem generated by a symmetry group from a single atom
(simple crystal).
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respectively) completing their full symmetry (spin group); for

a three-dimensional spin arrangement the spin-only group

contains only an identity element. A nontrivial spin group

NðGÞ is determined by the isomorphism NðGÞ= ~GG ffi B�, where
~GG is a normal subgroup of G (G ¼ ~GGþ g2

~GGþ . . .), while B� is

the group of coset representatives fe; b2; . . .g (in the coset

decomposition B ¼ ~BBþ b2
~BBþ . . . with normal subgroup ~BB).

The isomorphism (denoted by b ) between the quotient group

NðGÞ= ~GG and B� [which maps each coset gi
~GG into the element

b ðgi
~GGÞ ¼ bi from B�] generates the homomorphism DspðgÞ ¼

b ðg ~GGÞ of G onto B� (every element g is mapped to an ortho-

gonal matrix). Bearing in mind that a representation is a

homomorphism of G into a group of nonsingular matrices of

some carrier space, one concludes that Dsp is a representation

of G, called the spin representation in R
3. Therefore, the

nontrivial spin group is completely determined by the spin

representation, whose kernel is the normal subgroup ~GG.

Elements of the nontrivial spin group are ðg;DspðgÞÞ and act

on the spin field as

ðg;Dsp
ðgÞÞðr; srÞ ¼ ðgr;Dsp

ðgÞsrÞ; ð1Þ

assigning to the atom in gr the vector sgr, which is the spin

from r transformed by DspðgÞ (the lengths of spin vectors are

preserved).

For some fixed group G, different nontrivial spin groups are

those with nonequivalent spin representations. In other words,

nontrivial spin groups with the spin representations D
sp
1 ðGÞ

and D
sp
2 ðGÞ are equivalent if there is a matrix R from SO(3)

such that RD
sp
1 ðGÞR

�1 ¼ D
sp
2 ðGÞ. In fact, the usual equiva-

lence relation, i.e. conjugation by some nonsingular matrix X,

leads to the condition that X can be taken from Oð3Þ too, as

XD
sp
1 ðGÞX

�1 has to be a spin representation. This means that

X can be a rotation X ¼ R or rotoinversion X ¼ �IR (here I

is a three-dimensional identity matrix, thus �I represents

spatial inversion), but conjugation under these two gives the

same spin representation.

The procedure for the classification of nontrivial spin

groups proposed by Litvin and Opechowski assumes that one

finds all normal subgroups ~GG of the geometrical group G and

orthogonal group B� establishing the isomorphism b . We

found spin line groups (i.e. b ) directly, by construction of spin

representations Dsp, utilizing a convenient form of the irre-

ducible representations of the line groups (as explained in

Appendix A). The procedures are equivalent (as equivalent

representations have the same kernels).

2.1. Magnetic groups

It is important to realize that magnetic groups are special

cases of the spin groups; it is thus not possible to describe all

the spin systems which are within the scope of the spin groups

only by magnetic groups.

A magnetic group is isomorphic to the group of geometrical

transformations of a particular system, but together with the

Euclidean transformations it involves also the time reversal �.

Precisely, for a given system with the geometrical group G

there are two types of magnetic groups (we omit here grey

groups as they refer to systems with vanishing spins): besides

the ordinary group G, in addition one black-and-white

magnetic group is obtained from each halving subgroup ~GG of

G:

~GGþ �g0 ~GG; ð2Þ

here g0 is an arbitrary element of the coset G n ~GG. As the time

reversal changes the orientation of the spin vectors, whereas

the geometrical transformations act on a spin field by the axial

(pseudo) vector representation Dav, it follows that the

magnetic groups are nontrivial spin groups with the particular

spin representation DspðgÞ ¼ �gDavðgÞ, where �g is equal to 1

when g belongs to ~GG, and �1 otherwise.

3. First family spin line groups

Symmetry groups of the systems periodic (this includes not

only translational but also helical periodicity) along one

direction (the z axis by convention) are gathered into 13

infinite families of line groups. Among them there are 75 rod

groups (Kopský & Litvin, 2002), subperiodic ones, with the

crystallographic isogonal group principal axis of the order 1, 2,

3, 4 or 6.

The first family line groups are subgroups of index either

two or four in the groups of the remaining families, making

this family the most significant for understanding all the spin

line groups. Accordingly, in this section we start with a brief

reminder of the first family line groups and then in the next

subsection the nontrivial spin groups are derived.

3.1. First family line groups

Line group L of the first family is an abelian group with the

elements ‘ts ¼ ðCQjf Þ
tCs

n (t ¼ 0;�1; . . . and s ¼ 0; . . . ; n� 1),

manifesting factorization into the direct product (� is omitted

following the usual notation for line groups, where general-

izations to semi- and weak-direct products appear in higher

families) L ¼ TQðf ÞCn of two cyclic subgroups: the infinite

helical group TQðf Þ and the rotational group Cn of order n.

The generator of the helical group is ðCQjf Þ, being the rotation

CQ for 2�=Q (Q is a real number not less than 1; for Q ¼ 1 an

ordinary translational group is obtained) followed by the

translation for f along the z axis. The rotational group is

generated by the rotation Cn for 2�=n around the z axis.

Choosing a point r00 ¼ ð�; ’00; z00Þ (cylindrical coordi-

nates), the action of the first family line group generates the

set of points (orbit):

rts ¼ ðCQjf Þ
tCs

nr00 ¼ �; ’00 þ 2�
t

Q
þ

s

n

� �
; z00 þ tf

� �
;

t ¼ 0;�1; . . . ; s ¼ 0; . . . ; n� 1: ð3Þ

For r00 out of the z axis (i.e. �> 0) this is a generic orbit

(general-position orbit), with a trivial (identity element only,

C1) stabilizer (site-symmetry group). In particular, when

n ¼ 1, the group is reduced to the helical group TQðf Þ and the

atoms [equation (3)] are arranged on a helix. Note that for

irrational Q a system with such symmetry is incommensurate
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(no pure translations in L); otherwise, when Q ¼ q=r (q and r

are coprime integers, r< q), it is possible to choose q to be a

multiple of n and there is a translational period a ¼ qf=n. In

the opposite case, when the orbit representative r00 is a point

of special position, i.e. r00 is on the z axis (� ¼ 0), a linear orbit

is obtained and the corresponding stabilizer is a rotational

subgroup Cn. These orbits are illustrated in Fig. 1 and will be

used in realistic examples which follow. Note that the zigzag

orbit, in the middle of the figure, is a general-position orbit of

the helical line group which is also the rod group p21.

The irreducible representations of the first family line

groups are one-dimensional (as L is abelian). They are clas-

sified (Damnjanović & Milošević, 2010) by the pairs ð ~kk; ~mmÞ of

helical quantum numbers. To an arbitrary element ‘ts such a

representation ~kkA ~mm assigns the number:

~kkA ~mmð‘tsÞ ¼ exp i ~kkft þ ~mm
2�

n
s

� �
; ð4Þ

here the helical quasi-momentum ~kk takes values from

the helical Brillouin zone ð��=f ; �=f 	, while the angular

momentum ~mm is an integer from the interval ð�n=2; n=2	. It is

obvious that these representations are complex (the third kind

according to Wigner’s classifications, see Appendix A), except

0A0ð‘tsÞ ¼ 1; �=f A0ð‘tsÞ ¼ ð�1Þt; 0An=2ð‘tsÞ ¼ ð�1Þs;

�=f An=2ð‘tsÞ ¼ ð�1Þtþs; ð5Þ

which are real (the first kind). The latter are written in the

unified way as ð�1ÞC with C ¼ 0; t; s;w where w ¼ t þ s. The

representations with ~mm ¼ n=2 exist only for the groups with

even n.

As the spin representations are real, it is important to

classify the real (or physical) irreducible representations of the

line groups. To this end we note that each pair of mutually

conjugated complex representations ~kkA ~mmð‘tsÞ and � ~kkA� ~mmð‘tsÞ

gives a two-dimensional real representation equivalent to

their direct sum

~kkE ~mmð‘tsÞ ¼ Xð ~kkA ~mmð‘tsÞ 
� ~kk A� ~mmð‘tsÞÞX
y

¼
cos ð ~kkft þ ~mm 2�

n sÞ � sin ð ~kkft þ ~mm 2�
n sÞ

sin ð ~kkft þ ~mm 2�
n sÞ cos ð ~kkft þ ~mm 2�

n sÞ

 !
; ð6Þ

where

X ¼
1

21=2

1 1

�i i

� �
:

To count all these nonequivalent representations, ~kk takes the

values only from the right half ½0; �=f 	 of the helical Brillouin

zone, while the range of ~mm is the same as in the complex case.

To recap, the real irreducible representations of L are one

dimensional [(5)] and two dimensional [(6)].

3.2. Spin groups

As shown in x2, the classification of the nontrivial spin line

groups NðLÞ corresponding to a group of geometrical trans-

formations L is reduced to the classification of the non-

equivalent spin representations DspðLÞ, using physically

irreducible representations of L. This implies that one has to

form three-dimensional real representations combining

(making the direct sum of) the representations (5) and (6).

There are only two ways to do this (Appendix A, the first two

cases).

Firstly, any two-dimensional representation ~kkE ~mm can be

combined only with one of the representations (5); in this way,

four different classes of spin representations are obtained:

~kkDC
~mmð‘tsÞ ¼

cos ð ~kkft þ ~mm 2�
n sÞ � sin ð ~kkft þ ~mm 2�

n sÞ 0

sin ð ~kkft þ ~mm 2�
n sÞ cos ð ~kkft þ ~mm 2�

n sÞ 0

0 0 ð�1ÞC

0
B@

1
CA;

C ¼ 0; t; s;w;
~kk 2 ½0; �f 	

~mm 2 ð� n
2 ;

n
2	
: ð7Þ

Within the given class C, the choice of the pairs ð ~kk; ~mmÞ gives a

particular spin representation.

Note that in (7) the upper-left two-by-two block corre-

sponds to the rotation in the xy plane. It follows that, for the

class C ¼ 0, the spin representation of the group element ‘ts is

the rotation Rzð’tsÞ for ’ts ¼
~kkft þ ~mmð2�=nÞs around the z axis.

In the remaining three classes, C ¼ t; s;w, the halving

subgroup containing elements with C even is represented by

the rotations Rzð’tsÞ, while the other elements, with C odd (the

remaining coset), are reflections �Rzð’ts þ �Þ.
The second way to build a spin representation is to

combine three representations (5). However, note that the

classes (7) include for ~kk ¼ 0 or � and ~mm ¼ 0 or n=2, 12

cases Dspð‘tsÞ ¼ diag½ð�1ÞC; ð�1ÞC; ð�1ÞC
0

	 and four Dspð‘tsÞ ¼

diag½ð�1ÞC; ð�1ÞC; ð�1ÞC	. Hence, only the representations

Dspð‘tsÞ ¼ diag½ð�1ÞC1 ; ð�1ÞC2 ; ð�1ÞC3 	 with three different

representations (5) are not included in the classes (7). This
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Figure 1
Orbit types for the first family line groups: general-position orbit for the
groups T10(1.23 Å)C5 with r00 ¼ (3.392 Å, 2�=15; 0) and translational
period a = 2.46 Å (left), T2(1.43 Å)C1 with r00 ¼ (0.715 Å, 0, 0) and a =
2.86 Å (middle) and linear orbit for the family of the groups TQðf ÞCn

(right) with r00 on the system axis and a ¼ f . r10 and r01 are the atoms
obtained by the action of the helical generator and the generator of
rotations on r00, respectively. The height of the dark grey area on the
cylinder corresponds to the fractional translation f.



makes four exceptional spin representations, denoted by ĈC,

where C is one of 0, t, s or w, which are omitted in the

construction. Conveniently, the remaining three representa-

tions are arranged as in the set ft; s;w; 0g before one of the

symbols is taken out:

D0̂0
ð‘tsÞ ¼ diag½ð�1Þt; ð�1Þs; ð�1Þw	;

Dt̂tð‘tsÞ ¼ diag½ð�1Þs; ð�1Þw; 1	;

Dŝsð‘tsÞ ¼ diag½ð�1Þt; ð�1Þw; 1	;

Dŵwð‘tsÞ ¼ diag½ð�1Þt; ð�1Þs; 1	: ð8Þ

Thus, in all four exceptional groups the identity matrix is

associated with the elements of L with even t and s simulta-

neously. This means that the kernel of these representations is

an index-four subgroup of L and its three cosets correspond to

the remaining three different matrices of DĈC. These matrices

are involutions (their square is the identity matrix) and they

describe the rotations or the reflections in the spin space (a

detailed specification is given at the bottom of Table 2).

Recall that all equivalent spin representations are

RDspðLÞR�1, for arbitrary rotation R; these matrices have the

same form as (7) or (8), but in the coordinate system x0y0z0

obtained by the rotation R from the original one xyz. The

rotation R is usually given by three Euler angles �, � and �
(Rð�; �; �Þ), making

ð�;�;�Þ
~kk
DC

~mm, i.e. ð�;�;�ÞDĈC the complete label

of a spin representation.

To summarize, there are four classes and four exceptional

spin representations of the line groups of the first family

L ¼ TQðf ÞCn with even n. When n is odd, there are only two

classes C ¼ 0; t of the spin representations (no exceptional

representations and classes C ¼ s;w).

3.3. Magnetic groups

According to the structure of the magnetic groups (2)

discussed above, besides the ordinary first family line group

TQðf ÞCn, there are three corresponding black-and-white

magnetic groups if n is even:

TQ0 ð2f ÞCn þ �ðCQjf ÞTQ0 ð2f ÞCn :

Q0 ¼

(
Q=2; if Q � 2n;

nQ=ð2nþQþQ½� 2n
Q	Þ; otherwise

; ð9aÞ

TQðf ÞCn=2 þ �CnTQðf ÞCn=2; ð9bÞ

TQ0 ðf ÞCn=2 þ �ðCQjf ÞCnTQ0 ðf ÞCn=2 : Q0 ¼
Qn

Qþ n
: ð9cÞ

For n odd only the group in (9a) exists.

These groups are spin groups with the particular spin

representations (7). Namely: 2�=Qf D0
1ð‘tsÞ corresponds to

the ordinary magnetic group, while
ð0;�;0Þ
�=f�2�=Qf Dt

�1ð‘tsÞ,

2�=Qf Ds
�n=2þ1ð‘tsÞ and

ð0;�;0Þ
�=f�2�=Qf Dw

n=2�1ð‘tsÞ correspond to (9a),

(9b) and (9c), respectively.

4. Spin arrangements

In this section we briefly analyse spin arrangements obtained

by the action of the derived spin groups. First, we consider

single-orbit systems. For the orbit representative r00 placed at

a general position, with the spin vector s00, the spin group

distributes spins to other atoms according to (1):

ð‘tsr00;Dspð‘tsÞs00Þ ¼ ðrtsstsÞ: ð10Þ

Before proceeding further, let us comment on the choice of

the coordinate system x0y0z0 (directed along the unit vectors x0,

y0 and z0). It will be called a spin system (precisely: global spin

system), as it is related to the spin space only. In this system

matrices of Dsp are exactly those given by (7) and (8), and

further general discussion will be made in this frame.

However, the geometry of the atomic configuration usually

introduces some other natural coordinates xyz, to be called

global coordinates (in particular, the axis of the quasi-one-

dimensional system is taken to be the z axis). As a simple

illustration, let us take a look at the spin representations (7)

from the class C ¼ 0. As these are rotations around the z axis,

conjugation by rotation R intertwining the global and the spin

frames changes the axis of rotation but not the angle, and this

new rotation is the spin representation in the global frame.

For further discussion it is useful to introduce the conven-

tion that the angle 	 between the z0 axis and s00 is not greater

than �=2, which is enabled by the freedom in the choice of spin

system; in particular, the choice of the orientation of z0 suffices

to obey this convention.

The components of the spin vector sts of the atom rts in the

spin frame are for the classes and exceptional groups:

sts ¼ js00jðsin	 cos ð’ts þ ’00Þ; sin	 sin ð’ts þ ’00Þ; ð�1ÞC cos	Þ;

ð11aÞ

sts ¼ js00jðð�1ÞC1 sin	 cos ’00; ð�1ÞC2 sin	 sin ’00; ð�1ÞC3 cos	Þ;

ð11bÞ

where ’00 is the angle between the projection of s00 onto the

x0y0 plane and the x0 axis. In the case of the classes, for C even,

sts is the vector obtained from s00 by the rotation around z0 for

the angle ’ts ¼
~kkft þ ~mmð2�=nÞs (and positioned in rts), while

for C odd z0 projection of sts is in addition reversed. Obviously,

for C even the spin vector belongs to the cone obtained by the

rotation of s00 around the z0 axis, and to the reversed cone

when C is odd. This conclusion is valid for the exceptional

groups, too, as in this case x0, y0, z0 coordinates of sts are simply

multiplied by �1 with respect to s00, and lie on the same or on

the opposite cone with s00, depending on the parity of C3.

Thus, we showed that for quasi-one-dimensional systems spin

arrangements are necessarily conical.

Special cases are 	 ¼ 0 and 	 ¼ �=2, when these cones

degenerate in the one-dimensional (ferromagnetic and anti-

ferromagnetic) or two-dimensional (planar, flat) spin

arrangements, respectively. Precisely, if 	 ¼ 0 all the spins are

along the z0 direction, making ferromagnetic spin order for

class C ¼ 0 and exceptional groups t̂t, ŝs and ŵw, and anti-

ferromagnetic in the remaining cases. For 	 ¼ �=2 all spins are
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in the x0y0 plane (planar helimagnet); note that for a few

particular groups such a spin arrangement degenerates to a

linear one, but not along the z0 axis. Again, there are particular

groups with 0<	<�=2 for which a conical spatial arrange-

ment reduces to a planar or linear case. The dimensionality of

spin arrangements for all classes and all exceptions is given in

Table 1. Finally, because of the freedom in the choice of z0,

some groups give ferromagnetic or antiferromagnetic spin

arrangement as in the case 	 ¼ 0 but not along the z0 axis; in

fact, the class C ¼ 0 always corresponds to ferromagnets,

while the remaining three classes C ¼ t; s;w determine three

different types of antiferromagnets.

Expressions (11a) and (11b) completely describe the spin

arrangement, provided the orbit representative spin s00 is

known. So, it remains to find this vector. In general, it cannot

be arbitrarily chosen, but obeys the condition of being invar-

iant under the action of the stabilizer. This means that for each

element ‘ from the stabilizer the relations

Dsp
ð‘Þs00 ¼ s00 ð12Þ

must be fulfilled. Of course, for the generic orbit, with trivial

stabilizer, s00 is arbitrary. On the contrary, in the case of the

linear orbit (and n> 1), there are severe restrictions. Let us

thoroughly consider these restrictions on the components of

vector s00 ¼ ðs
1
00; s2

00; s3
00Þ for the class C ¼ 0 from (7) and the

linear orbit. As the linear orbit corresponds to elements ‘0s

(s ¼ 0; . . . ; n� 1), fixing a point r00; from (12) it follows that

cos ð ~mm 2�
n sÞ � sin ð ~mm 2�

n sÞ 0

sin ð ~mm 2�
n sÞ cos ð ~mm 2�

n sÞ 0

0 0 1

0
@

1
A s1

00

s2
00

s3
00

0
@

1
A ¼ s1

00

s2
00

s3
00

0
@

1
A:

It is obvious that s3
00 remains the same; thus any spin vector

along the z0 axis is allowed and then the spin arrangement

generated by the spin representation ~kkD0
~mmðLÞ is ferromagnetic.

The components in the x0y0 plane s1
00 and s2

00 are invariant if

ð ~mmsÞ=n (for all s) is an integer number. Taking into account

that ~mm is defined to be an integer from the interval

ð�n=2; n=2	, this can be only for ~mm ¼ 0, which means that for

the spin representations ~kkD0
0ðLÞ all directions for spin vector

s00 are allowed (conical helimagnet).

Similarly, for the class C ¼ t vector s00 is parallel to z0

(	 ¼ 0), generating antiferromagnetic order, except for

~mm ¼ 0, when all directions are allowed. For the remaining two

classes C ¼ s;w, for ~mm 6¼ 0 there is no allowed direction, while

for ~mm ¼ 0 all the directions perpendicular to z0 (	 ¼ �=2) are

allowed and generate planar helimagnetic order. This is

summarized in the upper part of Table 2, while examples of

spin arrangements for one group from each class and excep-

tional groups are illustrated in Fig. 2. Note that many of the

arrangements obtained by the spin groups, in particular those

incommensurate with the lattice, cannot be described by the

magnetic groups.

Analogous analysis for the exceptional representations

gives the results summarized in Table 2 (bottom part). The

condition (12) for the linear orbit leaves only s00 along x0 for 0̂0

(antiferromagnet) and along z0 for t̂t (ferromagnet). The other

two groups, ŝs and ŵw, for the linear orbit give the same spin

arrangement, with spins in a plane containing the z0 axis.

As for the magnetic groups, from Table 2 one finds that for

n> 1 the ordinary group generates ferromagnetic and the

group in (9a) antiferromagnetic spin ordering along the

system axis. Further, for the groups in (9b) and (9c) there are

no allowed directions for n> 2, while for n ¼ 2 spins are in the

plane perpendicular to the system axis forming the planar

helimagnet.
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Table 1
Description of the spin arrangements.

In the first column the cone angle 	 is given. Then the types of spin
arrangements are listed: in the upper part for the classes C with spin groups
singled out by ð~kk; ~mmÞ, and in the lower part for exceptional spin groups ĈC.
Types are characterized by F (ferromagnet), A (antiferromagnet), P (planar)
or C (conical). (*) stands for the conditions ~kk 6¼ 0; �=f or ~mm 6¼ 0; n=2.

	 C ~kk ~mm Type

0 0 8 ~kk 8 ~mm F
t; s;w 8 ~kk 8 ~mm A

0<	<�=2 0; t; s;w (*) C
0 0 0 F
t; s;w 0 0 A
0; t; s;w �=f 0 P
0; t; s;w 0 n=2; P
0; t; s;w �=f n=2; P

�=2 0; t; s;w (*) P
0; t; s;w 0 0 F
0; t; s;w �=f 0 A
0; t; s;w 0 n=2; A
0; t; s;w �=f n=2; A

	 ĈC Type

0 t̂t; ŝs; ŵw F
0̂0 A

0<	<�=2 0̂0; t̂t; ŝs; ŵw P for ’00 ¼ 0;��=2
0̂0; t̂t; ŝs; ŵw C for ’00 6¼ 0;��=2

�=2 0̂0; t̂t; ŝs; ŵw A for ’00 ¼ 0;��=2
0̂0; t̂t; ŝs; ŵw P for ’00 6¼ 0;��=2

Table 2
Classification of the spin arrangements for a linear orbit.

In the upper part groups from the classes C ¼ 0; s; t;w (column 1) are given by
the quantum numbers ~kk and ~mm (columns 2 and 3); in the bottom part
exceptional groups ĈC are specified in column 1, while their elements are
explained in the following four columns. In the last two columns are the
allowed vector s00 and the type of spin arrangement (characterized as in Table
1).

C ~kk ~mm s00 Type

0 8~kk ~mm 6¼ 0 z0 F
t 8~kk ~mm 6¼ 0 z0 A
0; t 8~kk ~mm ¼ 0 All C
s;w 8~kk ~mm 6¼ 0 None /
s;w 8~kk ~mm ¼ 0 x0y0 plane P

t even t even t odd t odd
ĈC s even s even s odd s odd s00 Type

0̂0 I C2x0 C2y0 C2z0 x0 A
t̂t I C2z0 �C2y0 �C2x0 z0 F
ŝs I �C2y0 C2z0 �C2x0 x0z0 plane H
ŵw I �C2y0 �C2x0 C2z0 x0z0 plane H



5. Generalization to multi-orbit systems

So far single-orbit systems have been analysed (this implies

that all the spins have the same magnitude). Let us now

consider a system consisting of M orbits. Each of them is either

a general-position or special-position orbit. Denoting the orbit

representative positions by ri;0 (i ¼ 1; . . . ;M), the whole

system is generated by the action of symmetry group G on the

set of these orbit representatives (called symcell, or asym-

metric unit), i.e. on the 3M-dimensional vector rsym
0 ¼

ðr1;0; . . . ; rM;0Þ of their positions. Analogously, a multi-orbit

magnetic system is generated by the action of the nontrivial

spin-group elements ðg;DspðgÞÞ for each g 2 G on the pair

ðr
sym
0 ; s

sym
0 Þ, where s

sym
0 is the set of spin vectors si;0 in the ith

orbit representative:

ðg;DspðgÞÞðr
sym
0 ; s

sym
0 Þ

¼ ððgr1;0; . . . ; grM;0Þ; ðD
sp
1 ðgÞs1;0; . . . ;D

sp
MðgÞsM;0ÞÞ: ð13Þ

Clearly, the total spin space of the symcell is the direct sum


M
i¼1Si of the spin spaces Si ¼ R

3 of the orbit representatives.

Thus, for multi-orbit systems the spin part of a spin-group

element is the direct sum of the orbital spin representations:

Dsp
ðgÞ ¼ 
M

i¼1D
sp
i ðgÞ: ð14Þ

For the first family line groups D
sp
i are spin representations

derived in x3. Of course, for each special orbit the restrictions

(12) must be satisfied independently.

Finally, note that the magnitude of spin of various orbits can

be different.

6. Discussion

It is shown that orthogonal three-

dimensional representations DspðGÞ of

the group of geometrical transforma-

tions G give nontrivial spin groups

ðG;DspðGÞÞ of G, with elements

ðg;DspðgÞÞ which describe spin

arrangements of a single-orbit system.

Accordingly, the classification of the

nontrivial spin groups of G reduces

to determination of all such non-

equivalent three-dimensional repre-

sentations, which can be performed by

combining real irreducible representa-

tions into the direct sums. After the

standard form is obtained this way, all

equivalent representations RDspðGÞ

are obtained as RDspðGÞR�1, where R

is a rotation relating the global coor-

dinate to the global spin frame. Note

that the position of the projection of

the spin vector onto the x0y0 plane is

parameterized both by the azimuthal

angle ’00 and the Euler angle �.

Therefore, these two angles are related and one of them is

superfluous. The spin representations derived for single-orbit

systems are directly summed in the case of multi-orbit systems

to give the total spin representation.

As an illustration, we find the spin group for the proposed

spin structure of a ‘triangular’ two-leg ladder (Fig. 3, left) in

the cuprate compound LiCu2O2 (Masuda et al., 2004).

LiCu2O2 crystallizes in the orthorhombic lattice with unit-cell

parameters a ¼ 5:73, b ¼ 2:86 and c ¼ 12:42 Å. Magnetic

divalent cations Cu2þ, with spin 1=2, form ‘triangular’ two-leg

ladders (or zigzag chains) along the crystallographic b axis. As

these zigzag chains are mutually weakly coupled, each can be

viewed as a quasi-one-dimensional system. It was experi-

mentally verified that below the critical temperature Tc ’

22 K this system has incommensurate helimagnetic long-range

order: the spins rotate in the crystallographic ab plane with the

angle �ð1� 
Þ where 
 ¼ 0.1738 (2). The angle between this

plane and the plane of the ladder is 45�; also, the axis around

which spins rotate makes the same angle with the ladder plane.

Determination of spin groups should be performed in two

steps: first one finds the geometrical symmetry group and

orbit, then the corresponding spin representation. The zigzag

chain can be seen as a single (general-position) orbit with the

symmetry being the first family line group T2ðf ÞC1 (Fig. 3, left).

Therefore it is natural to choose the z axis to be along the

crystallographic b axis. From the data for the unit cell, one

immediately reads that the translational period is b, giving the

fractional translation f ¼ b=2. Further, let the ladder be in the

xz plane with the orbit representative at r00 ¼ ðw=2; 0; 0Þ,

where w ¼ 1:43 Å is the ladder width. The spin frame (Fig. 3,

bottom left) is determined by coincidence of the z0 axis with

the axis of spin rotation (thus spins rotate in the x0y0 plane),
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Figure 2
Spin arrangements for various spin groups. The top row shows spin representations belonging to the
following classes: commensurate are

ð0;�=3;�=5Þ
�=2f D0

2ðT5ðf ÞC5Þ and
ð0;�=3;�=5Þ
�=2f Dt

�2ðT5ðf ÞC5Þ, with opposite
quantum number ~mm resulting in the opposite sense of rotation of spin within the monomer;
ð0;�=3;�=5Þ
1 Ds

1ðT7ðf ÞC4Þ is incommensurate, and
ð0;�;0Þ
5�=7f Dw

1 ðT7ðf ÞC4Þ is a magnetic group. The bottom
row shows the arrangements generated by the four exceptional spin representations
ð0;�=3;�=5ÞD0̂0ðT7ðf ÞC4Þ,

ð0;�=3;�=5ÞDt̂tðT7ðf ÞC4Þ,
ð0;�=3;�=5ÞDŝsðT7ðf ÞC4Þ and ð0;�=3;�=5ÞDŵwðT7ðf ÞC4Þ.



giving the Euler angles � ¼ �=2; � ¼ �=2 and � ¼ �=4. As the

system is a general-position orbit, there are no restrictions on

the orbit representative spin vector s00 and one can take

’00 ¼ 0; 	 ¼ �=2 (planar arrangements) and js00j ¼ 1=2

(magnitude of spins). Finally, the period of the magnetic lattice

is incommensurate with the period of the geometrical lattice;

among the spin representations this is realized for those from

the classes (for helical groups ~mm ¼ 0). Relation (11a) gives the

spin arrangement of the zigzag chain (the atoms are counted

by t, s ¼ 0) that was sought, by noting that the experimental

value of the angle of rotation of the spins is actually the angle

between spin vectors of the t-th and t þ 1-th atom, i.e.

’10 ¼ �ð1� 
Þ. To conclude, the geometry of the zigzag chain

is obtained by the action of the group T2ðb=2ÞC1 on the atom

in the position r00 ¼ ð0:715 Å, 0, 0), while the corresponding

spin arrangement is obtained by the action of the spin

representation
ð�=2;�=2;�=4Þ
2�ð1�
Þ=b DC

0 on the vector Rð�=2; �=2; �=4Þs00

[s00 ¼ ð1=2; 0; 0Þ in Cartesian coordinates]. Note, in this way

all relevant quantities of the magnetic system may be given in

the coordinate frame xyz.

Another example of a planar helimagnet is that of single-

wall carbon nanotubes grown entirely from 13C (Rummeli et

al., 2007; Churchill et al., 2009). It was shown theoretically that

a weak hyperfine interaction can lead to such magnetic order

of the nuclear spins (magnitude is 1/2) in armchair nanotubes

(Braunecker et al., 2009). In fact, spins on a cross section of

the nanotube are ferromagnetically oriented, while along

the nanotube axis they rotate with the period �=kF (Fig. 3,

middle), where kF is the Fermi-level quasi-momentum.

Obviously, the spin frame coincides with the system frame. In

terms of the first family line groups each nanotube is

composed of two general-position orbits, both being of the

same type. All group parameters q, r, n and f are known

functions of the chiral indexes ðn1; n2Þ of the nanotube, as well

as kF ¼ 2�=3f (Damnjanović & Milošević, 2010). Let us

mention that, despite the fact that the translational period a of

the armchair nanotubes is equal to the period of the graphene

hexagonal lattice a0 ¼ 2:46 Å, this and other nanotubes

cannot be described by rod groups.

To illustrate the determination of spin group, a (5,5)

nanotube is utilized here. The whole nanotube is generated by

the action of the first family line group T10(1.23 Å)C4 on two

orbit representative atoms (M ¼ 2) in the positions r1;00 =

(3.392 Å, 2�=15; 0) (this orbit is given in Fig. 1, left) and r2;00 =

(3.392 Å, �2�=15; 0) (the same type of orbit as before), both

being on the same cross section. The dimension of the spin

space of the symcell is two times greater than for single-orbit

systems; thus the total spin vector s
sym
00 is six-dimensional, as

well as the total spin representation. As in the previous

illustration of planar helimagnets, both spin vectors s1;00 and

s2;00 belong to the x0y0 plane (	 ¼ �=2) where they can be

selected arbitrarily, but to reproduce a ferromagnet they must

be mutually parallel. The angle of rotation of spins between

adjacent cross sections that contain atoms is 2kFf ¼ 4�=3,

meaning that the spin representations D
sp
1 and D

sp
2 are from

the classes with ~mm ¼ 0 (ferromagnetic cross sections). Thus,

the total spin representation is 2kF
DC

0 
2kF
DC

0 , and acting on

the column ssym ¼ 1=2ð1; 0; 0; 1; 0; 0Þ (Cartesian coordinates)

gives the spin arrangement.

In order to describe multi-orbit systems with conically

arranged spins of different magnitudes, we mention here the

multiferroic Y-type hexaferrite Ba2Mg2Fe12O22. Neutron

diffraction studies have confirmed the coexistence of several

conical spin phases (Ishiwata et al., 2010). The spins are

ferrimagnetically ordered within two kinds of blocks (black

and white balls in Fig. 3, right panel), each carrying the net

magnetic moments with mutually different magnitude. Each of

these blocks can be viewed as one linear orbit, thus being

described by Tðf ÞC1 where f is translational period (the total

length of both blocks). For example, the magnetic symmetry of

the phase FE2 (Ishiwata et al., 2010, p. 2) is described by the

spin representation
ð�=2;�=2;0Þ

�=f D0
0ðLÞ 


ð�=2;�=2;0Þ
�=f D0

0ðLÞ, from the

class C ¼ 0, with quantum numbers ð ~kk; ~mmÞ ¼ ð�=f ; 0Þ. The

cone angle 	 is about 70� at 10 K.

One of the known applications of symmetry is reduction of

the number of independent parameters describing the system.

This can be of great importance in the prediction of optimal

spin arrangements, and here we outline a general method

illustrating the efficiency of a symmetry-based approach in

determination of the classical ground state.

The most important fact is that there is a minimal set of the

atoms generating the whole system by the action of the

symmetry group L; then, in the minimization one can use the

energy per symcell:

Esym½s1;0; s1;1; . . .	 ¼
PM

ij

P
‘2L

si;0hðri;0; rj;‘Þsj;‘: ð15Þ

Here the indexes i and j count the orbits of a system, and h is

an interaction tensor (its elements are coupling coefficients)

between spins, being a function of atomic positions in the

general case. Simultaneously, the spin vectors are arranged

over the atoms by the action of the corresponding spin

representations on the spins si;0 of the symcell. Thus, to

minimize the classical energy one has to vary over the symcell
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Figure 3
Spin arrangements for CuO2 chains in LiCu2O2 (left), a (5,5) 13C
nanotube (middle) and Ba2Mg2Fe12O22 (right). Different colours of
atoms indicate different orbits.



spins (parameters 	i and ’i;0) and the spin representations

which include classes (parameterized by the continual para-

meter ~kk and the discrete one ~mm), as well as the finite

set of exceptional representations. In the case of quasi-one-

dimensional systems, with high-order helical axes (including

incommensurate systems) resulting in translational elemen-

tary cells with a huge number of atoms, this can tremendously

reduce the number of variational parameters.

We performed numerical minimization of the energy (15)

for the isolated zigzag chain described above. For single-orbit

systems sums over i and j in the energy expression vanish, and

spin vectors are given by (11a), (11b) (with s ¼ 0). The

interaction tensor between an atom r00 and its relevant

neighbours rt0 can be written

hðr00; rt0Þ ¼ diag½Jt; Jt þDex
t ; Jt	; ð16Þ

where only exchange coupling coefficients J1 ¼ 6:4,

J2 ¼ �11:9, J4 ¼ 7:6 meV and exchange anisotropy Dex
1 ¼

Dex ¼ 0:083 meV are non-vanishing (Masuda et al., 2005;

Mihaly et al., 2006). We found that the minimum of the energy

corresponds to the ground-state arrangement given by

	 ¼ �=2, ’00 ¼ �=2 and ~kk ¼ 2:58 Å�1, being in agreement

with experimental values.

The intensity in elastic magnetic scattering of unpolarized

neutrons by a single-orbit magnetic system [set of pairs

ðrts; stsÞ], whose symmetry is the first family spin line group, is

determined by the scattering amplitude,

PðkÞ ¼ p
P1

t¼�1

Pn�1

s¼0

expðikrtsÞsts; ð17Þ

where k is the scattering vector and p the magnetic structure

factor. Invariance of the scattering amplitude under the

elements of the first family spin line groups ð‘ts;Dspð‘tsÞÞ leads

to the relations PðkÞ ¼ expðikzf ÞDspð‘tsÞPðC
2nQ�tn�sQ
Qn kÞ.

As a simple illustration we calculate the scattering ampli-

tude for the zigzag chain discussed in x3. In the spin frame,

substituting the obtained data in (17), one gets

Px0 ðkÞ

Py0 ðkÞ

Pz0kÞ

0
B@

1
CA ¼ p

2

X1
t¼�1

exp ið�1Þt
w

2ð21=2Þ
ðky0 þ kz0 Þ

� �
exp i

b

2
kx0 t

� �

�

cos b
2

~kkt

sin b
2

~kkt

0

0
B@

1
CA: ð18Þ

Separating the sum into odd and even terms yields

Px0 ðkÞ

Py0 ðkÞ

Pz0 ðkÞ

0
B@

1
CA /X

�

cos
w

2ð21=2Þ
k?

�

�ðkþx0 � �
2�
b Þ þ �ðk

�
x0 � �

2�
b Þ

�i�ðkþx0 � �
2�
b Þ þ i�ðk�x0 � �

2�
b Þ

0

0
B@

1
CA; ð19Þ

where k? ¼ ky0 þ kz0 , k�x0 ¼ kx0 �
~kk and � is an integer.

Obviously, this gives sharp peaks (determining the angle of

rotation between the t-th and t þ 1-th spin vectors) along the

kx0 axis (recall that the zigzag chain is along x0) and some

modulation in the perpendicular plane.

7. Conclusions

Spin representations for any system with geometrical

symmetry described by the first family line group L ¼ TQðf ÞCn

are found. Each of them is either from class C or exceptional

ĈC. Precisely, for n even there are four classes (C ¼ 0; t; s;w) of

the nonequivalent spin representations and the particular spin

representation of a class is determined by the pair of quantum

numbers ð ~kk; ~mmÞ in the form of (7); in addition there are four

exceptional representations ĈC ¼ 0̂0; ŝs; t̂t; ŵw given by (8). For n

odd, only the representations from the two classes C ¼ 0; t

describe possible magnetic symmetries.

Each line group LF (F = 2, . . . , 13) has one line group L

from the first family as a subgroup of index two (in the families

2–8) or index four (in the families 9–13). Therefore, any orbit

of LF is either also an orbit of L, or can be decomposed into

two or four orbits of L. This enables us to treat the systems

with higher line-group symmetries with the help of the derived

spin representations of the first family. A powerful method of

interpretation of experimental results can be established,

providing a unified classification of all spin arrangements that

appear in regular quasi-one-dimensional systems.

APPENDIX A
Classification of real spin representations

According to Wigner’s classification, a representation DðGÞ of

the group G can be [D1ðGÞ 
 D2ðGÞ means D1ðGÞ ¼

XD2ðGÞX
�1 for nonsingular operator X]:

(i) of the first kind if DðGÞ 
 D�ðGÞ and there is an

equivalent real representation;

(ii) of the second kind if DðGÞ 
 D�ðGÞ, but there is no

equivalent real representation;

(iii) of the third kind if DðGÞ 6
 D�ðGÞ.

Starting from the irreducible representations D� (the

Greek superscript counts the irreducible representations) of

dimension j�j (of relevance are one-, two- and three-

dimensional), three-dimensional real representations (spin

representations) DspðGÞ could be constructed as one of the

following:

(i) D�ðGÞ;D
ðGÞ;D�ðGÞ are the representations of the first

kind and j�j ¼ j
j ¼ j�j ¼ 1, then:

(a) DspðGÞ ¼ 3D�ðGÞ (the same form for 
 and �),

(b) DspðGÞ ¼ 2D�ðGÞ 
D
ðGÞ (the same 2 + 1 form for the

other combinations),

(c) DspðGÞ ¼ D�ðGÞ 
D
ðGÞ 
D�ðGÞ.

(ii) D�ðGÞ is of the second or third kind and D
ðGÞ is of

the first kind, and j�j ¼ j
j ¼ 1, then DspðGÞ ¼

XðD�ðGÞ 
D��ðGÞÞX�1 
D
ðGÞ, where

X ¼
1

21=2

1 1

�i i

� �
;

as D�ðGÞ 
D��ðGÞ is of the first kind.
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(iii) D�ðGÞ;D
ðGÞ are of the first kind and j�j ¼ 2, j
j ¼ 1,

then DspðGÞ ¼ D�ðGÞ 
D
ðGÞ.

(iv) D�ðGÞ is of the first kind and j�j ¼ 3, then DspðGÞ ¼

D�ðGÞ.

Note that nonequivalent forms are given here. For example,

the spin representation D�ðGÞ 
D
ðGÞ 
D�ðGÞ is equiva-

lent to any spin representation of the same form obtained

by permuting �, 
, �; similarly 2D�ðGÞ 
D
ðGÞ 


D
ðGÞ 
 2D�ðGÞ.
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Damnjanović, M. & Vujičić, M. (1982). Phys. Rev. B, 25, 6987–6994.

Garlea, V. O., Zheludev, A., Regnault, L.-P., Chung, J.-H., Qiu, Y.,
Boehm, M., Habicht, K. & Meissner, M. (2008). Phys. Rev. Lett.
100, 037206.

Ishiwata, S., Okuyama, S., Kakurai, K., Nishi, M., Taguchi, Y. &
Tokura, Y. (2010). Phys. Rev. B, 81, 174418.
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research papers

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ib5021&bbid=BB23

